Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome ; 63(1): 37-52, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31580730

RESUMO

Lasiodiplodia theobromae (Pat.) Griffon & Maubl., a member of the family Botryosphaeriaceae, is becoming a significant threat to crops and woody plants in many parts of the world, including the major cacao growing areas. While attempting to isolate Ceratobasidium theobromae, a causal agent of vascular streak dieback (VSD), from symptomatic cacao stems, 74% of isolated fungi were Lasiodiplodia spp. Sequence-based identification of 52 putative isolates of L. theobromae indicated that diverse species of Lasiodiplodia were associated with cacao in the studied areas, and the isolates showed variation in aggressiveness when assayed using cacao leaf discs. The present study reports a 43.75 Mb de novo assembled genome of an isolate of L. theobromae from cacao. Ab initio gene prediction generated 13 061 protein-coding genes, of which 2862 are unique to L. theobromae, when compared with other closely related Botryosphaeriaceae. Transcriptome analysis revealed that 11 860 predicted genes were transcriptionally active and 1255 were more highly expressed in planta compared with cultured mycelia. The predicted genes differentially expressed during infection were mainly those involved in carbohydrate, pectin, and lignin catabolism, cytochrome P450, necrosis-inducing proteins, and putative effectors. These findings significantly expand our knowledge of the genome of L. theobromae and the genes involved in virulence and pathogenicity.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Cacau/microbiologia , Genoma Fúngico , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , RNA-Seq
2.
Fungal Biol ; 122(7): 701-716, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880205

RESUMO

Moniliophthora roreri (Mr) causes frosty pod rot of Theobroma cacao in a hemibiotrophic association. The Mr biotroph-like phase has not been studied in culture. Mr spores (isolates Co12, Co52, and B3) were germinated on high (V8) and low (BPMM) nutrients with different media hardness (0.5% to 3% agarose). Germination was high on V8 media. Hardness affected germination on BPMM. Most colonies on V8 were slow-growing, failing to sporulate. Colony morphology depended on the isolate. On BPMM, exaggerated mycelia formed of limited length with enlarged cells. On agarose, rapidly expanding sporulating necrotrophic colonies formed rarely. Co12 and B3 spores were germinated on V8 and BPMM with low melting point (LMP) agarose. Slow-growing colonies of B3 on BPMM were unstable on LMP agarose, often forming slow-growing/rapidly expanding hybrids. Slow-growing colonies are hypothesized to represent the biotrophic phase. One nucleus was common in Mr cells, other than spores. Binucleate cells were occasionally observed in aged cells of slow-growing mycelia. Co52 cells often had more than two nuclei per cell after germination. Mr mycelia cells typically carry a single nucleus, being considered haploid. Biotroph- and necrotroph-like mycelia displayed differential gene expression but results were inconsistent with published in vivo results and require further study.


Assuntos
Agaricales/crescimento & desenvolvimento , Agaricales/citologia , Agaricales/fisiologia , Cacau/microbiologia , Núcleo Celular , Meios de Cultura , Micélio/citologia , Micélio/crescimento & desenvolvimento , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento
3.
Front Plant Sci ; 8: 169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261234

RESUMO

Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) cause black pod rot of Theobroma cacao L. (cacao). Of these two clade 4 species, Pmeg is more virulent and is displacing Ppal in many cacao production areas in Africa. Symptoms and species specific sporangia production were compared when the two species were co-inoculated onto pod pieces in staggered 24 h time intervals. Pmeg sporangia were predominantly recovered from pod pieces with unwounded surfaces even when inoculated 24 h after Ppal. On wounded surfaces, sporangia of Ppal were predominantly recovered if the two species were simultaneously applied or Ppal was applied first but not if Pmeg was applied first. Pmeg demonstrated an advantage over Ppal when infecting un-wounded surfaces while Ppal had the advantage when infecting wounded surfaces. RNA-Seq was carried out on RNA isolated from control and Pmeg and Ppal infected pod pieces 3 days post inoculation to assess their abilities to alter/suppress cacao defense. Expression of 4,482 and 5,264 cacao genes was altered after Pmeg and Ppal infection, respectively, with most genes responding to both species. Neural network self-organizing map analyses separated the cacao RNA-Seq gene expression profiles into 24 classes, 6 of which were largely induced in response to infection. Using KEGG analysis, subsets of genes composing interrelated pathways leading to phenylpropanoid biosynthesis, ethylene and jasmonic acid biosynthesis and action, plant defense signal transduction, and endocytosis showed induction in response to infection. A large subset of genes encoding putative Pr-proteins also showed differential expression in response to infection. A subset of 36 cacao genes was used to validate the RNA-Seq expression data and compare infection induced gene expression patterns in leaves and wounded and unwounded pod husks. Expression patterns between RNA-Seq and RT-qPCR were generally reproducible. The level and timing of altered gene expression was influenced by the tissues studied and by wounding. Although, in these susceptible interactions gene expression patterns were similar, some genes did show differential expression in a Phytophthora species dependent manner. The biggest difference was the more intense changes in expression in Ppal inoculated wounded pod pieces further demonstrating its rapid progression when penetrating through wounds.

5.
Front Microbiol ; 6: 850, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379633

RESUMO

Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups). Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri.

6.
Mol Plant Pathol ; 15(7): 711-29, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24612180

RESUMO

Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms.


Assuntos
Agaricales/fisiologia , Cacau/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Agaricales/genética , Cacau/microbiologia , Genes Fúngicos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
7.
Mol Plant Pathol ; 15(7): 698-710, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24528440

RESUMO

An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones.


Assuntos
Adaptação Fisiológica , Agaricales/patogenicidade , Cacau/microbiologia , Regulação da Expressão Gênica de Plantas , Cacau/genética , Cacau/fisiologia , Genes de Plantas , Dados de Sequência Molecular , RNA de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
8.
Mol Plant Microbe Interact ; 24(3): 336-51, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21091159

RESUMO

Endophytic Trichoderma isolates collected in tropical environments were evaluated for biocontrol activity against Phytophthora capsici in hot pepper (Capsicum annuum). Six isolates were tested for parasitic and antimicrobial activity against P. capsici and for endophytic and induced resistance capabilities in pepper. Isolates DIS 70a, DIS 219b, and DIS 376f were P. capsici parasites, while DIS 70a, DIS 259j, DIS 320c, and DIS 376f metabolites inhibited P. capsici. All six isolates colonized roots but were inefficient stem colonizers. DIS 259j, DIS 320c, and DIS 376f induced defense-related expressed sequence tags (EST) in 32-day-old peppers. DIS 70a, DIS 259j, and DIS 376f delayed disease development. Initial colonization of roots by DIS 259j or DIS 376f induced EST with potential to impact Trichoderma endophytic colonization and disease development, including multiple lipid transferase protein (LTP)-like family members. The timing and intensity of induction varied between isolates. Expression of CaLTP-N, encoding a LTP-like protein in pepper, in N. benthamiana leaves reduced disease development in response to P. nicotianae inoculation, suggesting LTP are functional components of resistance induced by Trichoderma species. Trichoderma isolates were endophytic on pepper roots in which, depending on the isolate, they delayed disease development by P. capsici and induced strong and divergent defense reactions.


Assuntos
Antibiose , Capsicum/microbiologia , Phytophthora/patogenicidade , Doenças das Plantas/prevenção & controle , Trichoderma/metabolismo , Etiquetas de Sequências Expressas , Proteínas de Choque Térmico/genética , Phytophthora/crescimento & desenvolvimento , Phytophthora/parasitologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Raízes de Plantas/microbiologia , Nicotiana/microbiologia , Trichoderma/crescimento & desenvolvimento
9.
Mycol Res ; 113(Pt 12): 1365-76, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19765658

RESUMO

Trichoderma species are usually considered soil organisms that colonize plant roots, sometimes forming a symbiotic relationship. Recent studies demonstrate that Trichoderma species are also capable of colonizing the above ground tissues of Theobroma cacao (cacao) in what has been characterized as an endophytic relationship. Trichoderma species can be re-isolated from surface sterilized cacao stem tissue, including the bark and xylem, the apical meristem, and to a lesser degree from leaves. SEM analysis of cacao stems colonized by strains of four Trichoderma species (Trichoderma ovalisporum-DIS 70a, Trichoderma hamatum-DIS 219b, Trichoderma koningiopsis-DIS 172ai, or Trichoderma harzianum-DIS 219f) showed a preference for surface colonization of glandular trichomes versus non-glandular trichomes. The Trichoderma strains colonized the glandular trichome tips and formed swellings resembling appresoria. Hyphae were observed emerging from the glandular trichomes on surface sterilized stems from cacao seedlings that had been inoculated with each of the four Trichoderma strains. Fungal hyphae were observed under the microscope emerging from the trichomes as soon as 6h after their isolation from surface sterilized cacao seedling stems. Hyphae were also observed, in some cases, emerging from stalk cells opposite the trichome head. Repeated single trichome/hyphae isolations verified that the emerging hyphae were the Trichoderma strains with which the cacao seedlings had been inoculated. Strains of four Trichoderma species were able to enter glandular trichomes during the colonization of cacao stems where they survived surface sterilization and could be re-isolated. The penetration of cacao trichomes may provide the entry point for Trichoderma species into the cacao stem allowing systemic colonization of this tissue.


Assuntos
Cacau/microbiologia , Trichoderma/isolamento & purificação , Antibiose/genética , Cacau/anatomia & histologia , DNA Fúngico/classificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/classificação , DNA Espaçador Ribossômico/genética , Secas , Hifas/classificação , Hifas/genética , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Alinhamento de Sequência , Simbiose/genética , Trichoderma/classificação , Trichoderma/genética
10.
J Exp Bot ; 60(11): 3279-95, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19564160

RESUMO

Theobroma cacao (cacao) is cultivated in tropical climates and is exposed to drought stress. The impact of the endophytic fungus Trichoderma hamatum isolate DIS 219b on cacao's response to drought was studied. Colonization by DIS 219b delayed drought-induced changes in stomatal conductance, net photosynthesis, and green fluorescence emissions. The altered expression of 19 expressed sequence tags (ESTs) (seven in leaves and 17 in roots with some overlap) by drought was detected using quantitative real-time reverse transcription PCR. Roots tended to respond earlier to drought than leaves, with the drought-induced changes in expression of seven ESTs being observed after 7 d of withholding water. Changes in gene expression in leaves were not observed until after 10 d of withholding water. DIS 219b colonization delayed the drought-altered expression of all seven ESTs responsive to drought in leaves by > or = 3 d, but had less influence on the expression pattern of the drought-responsive ESTs in roots. DIS 219b colonization had minimal direct influence on the expression of drought-responsive ESTs in 32-d-old seedlings. By contrast, DIS 219b colonization of 9-d-old seedlings altered expression of drought-responsive ESTs, sometimes in patterns opposite of that observed in response to drought. Drought induced an increase in the concentration of many amino acids in cacao leaves, while DIS 219b colonization caused a decrease in aspartic acid and glutamic acid concentrations and an increase in alanine and gamma-aminobutyric acid concentrations. With or without exposure to drought conditions, colonization by DIS 219b promoted seedling growth, the most consistent effects being an increase in root fresh weight, root dry weight, and root water content. Colonized seedlings were slower to wilt in response to drought as measured by a decrease in the leaf angle drop. The primary direct effect of DIS 219b colonization was promotion of root growth, regardless of water status, and an increase in water content which it is proposed caused a delay in many aspects of the drought response of cacao.


Assuntos
Cacau/crescimento & desenvolvimento , Cacau/fisiologia , Trichoderma/crescimento & desenvolvimento , Cacau/genética , Cacau/microbiologia , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Estresse Fisiológico , Trichoderma/isolamento & purificação , Água/metabolismo
11.
Plant Physiol Biochem ; 46(2): 174-88, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18042394

RESUMO

Drought can negatively impact pod production despite the fact that cacao production usually occurs in tropical areas having high rainfall. Polyamines (PAs) have been associated with the response of plants to drought in addition to their roles in responses to many other stresses. The constitutive and drought inducible expression patterns of genes encoding enzymes involved in PA biosynthesis were determined: an ornithine decarboxylase (TcODC), an arginine decarboxylase (TcADC), an S-adenosylmethionine decarboxylase (TcSAMDC), a spermidine synthase (TcSPDS), and a spermine synthase (TcSPMS). Expression analysis using quantitative real-time reverse transcription-PCR (QPCR) results showed that the PA biosynthesis genes were expressed in all plant tissues examined. Constitutive expression of PA biosynthesis genes was generally highest in mature leaves and open flowers. Expression of TcODC, TcADC, and TcSAMDC was induced with the onset of drought and correlated with changes in stomatal conductance, photosynthesis, photosystem II efficiency, leaf water potential and altered emission of blue-green fluorescence from cacao leaves. Induction of TcSAMDC in leaves was most closely correlated with changes in water potential. The earliest measured responses to drought were enhanced expression of TcADC and TcSAMDC in roots along with decreases in stomatal conductance, photosynthesis, and photosystem II efficiency. Elevated levels of putrescine, spermidine, and spermine were detected in cacao leaves 13days after the onset of drought. Expression of all five PA associated transcripts was enhanced (1.5-3-fold) in response to treatment with abscisic acid. TcODC and TcADC, were also responsive to mechanical wounding, infection by Phytophthora megakarya (a causal agent of black pod disease in cacao), the necrosis- and ethylene-inducing protein (Nep1) of Fusarium oxysporum, and flower abscission. TcSAMDC expression was responsive to all stresses except flower abscission. TcODC, although constitutively expressed at much lower levels than TcADC, TcSAMDC, TcSPDS, and TcSPMS, was highly inducible by the fungal protein Nep1 (135-fold) and the cacao pathogen Phytophthora megakarya (671-fold). The full length cDNA for ODC was cloned and characterized. Among the genes studied, TcODC, TcADC, and TcSAMDC were most sensitive to induction by drought in addition to other abiotic and biotic stresses. TcODC, TcADC, and TcSAMDC may share signal transduction pathways and/or the stress induced signal induction pathways may converge at these three genes leading to similar although not identical patterns of expression. It is possible altering PA levels in cacao will result in enhanced tolerance to multiple stresses including drought and disease as has been demonstrated in other crops.


Assuntos
Cacau/genética , Desastres , Proteínas de Plantas/genética , Poliaminas/metabolismo , Ácido Abscísico/farmacologia , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Sequência de Aminoácidos , Cacau/metabolismo , Cacau/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Oomicetos/crescimento & desenvolvimento , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Espermina Sintase/genética , Espermina Sintase/metabolismo
12.
Plant Physiol Biochem ; 43(6): 611-22, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15979314

RESUMO

Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 and a compatible infection by Phytophthora megakarya were studied. Ten genes were selected to represent genes involved in defense (TcCaf-1, TcGlu1,3, TcChiB, TcCou-1, and TcPer-1), gene regulation (TcWRKY-1 and TcORFX-1), cell wall development (TcCou-1, TcPer-1, and TcGlu-1), or energy production (TcLhca-1 and TcrbcS). Leaf development was separated into unexpanded (UE), young red (YR), immature green (IG), and mature green (MG). Our data indicates that the constitutive defense mechanisms used by cacao leaves differ between different developmental stages. TcWRKY-1 and TcChiB were highly expressed in MG leaves, and TcPer-1, TcGlu-1, and TcCou-1 were highly expressed in YR leaves. TcGlu1,3 was highly expressed in UE and YR leaves, TcCaf-1 was highly expressed in UE leaves, and TcLhca-1 and TcrbcS were highly expressed in IG and MG leaves. NEP1 encodes the necrosis inducing protein Nep1 produced by Fusarium oxysporum and has orthologs in Phytophthora species. Nep1 caused cellular necrosis on MG leaves and young pods within 24 h of application. Necrosis was observed on YR leaves 10 days after treatment. Expression of TcWRKY-1, TcORFX-1, TcPer-1, and TcGlu-1 was enhanced and TcLhca-1 and TcrbcS were repressed in MG leaves after Nep1 treatment. Expression of TcWRKY-1 and TcORFX-1 was enhanced in YR leaves after Nep1 treatment. Infection of MG leaf disks by P. megakarya zoospores enhanced expression of TcGlu-1, TcWRKY-1, and TcPer-1 and repressed expression of TcChiB, TcLhca-1 and TcrbcS. Five of the six genes that were responsive to Nep1 were responsive to infection by P. megakarya. Susceptibility of T. cacao to P. megakarya includes altered plant gene expression and phytotoxic molecules like Nep1 may contribute to susceptibility.


Assuntos
Proteínas de Algas/fisiologia , Cacau/crescimento & desenvolvimento , Phytophthora , Doenças das Plantas , Proteínas de Algas/genética , Cacau/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Phytophthora/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
13.
Plant Cell Rep ; 23(6): 404-13, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15340758

RESUMO

Pathogenic diseases represent a major constraint to the growth and yield of cacao (Theobroma cacao L.). Ongoing research on model plant systems has revealed that defense responses are activated via signaling pathways mediated by endogenous signaling molecules such as salicylic acid, jasmonic acid and ethylene. Activation of plant defenses is associated with changes in the expression of large numbers of genes. To gain a better understanding of defense responses in cacao, we have employed suppressive subtractive hybridization (SSH) cDNA libraries, macroarray hybridization analysis, high throughput DNA sequencing and bioinformatics to identify cacao genes induced by these signaling molecules. Additionally, we investigated gene activation by a phytotoxic elicitor-like protein, Nep1. We have identified a unigene set of 1,256 members, including 330 members representing genes induced during the defense response.


Assuntos
Cacau/genética , Etiquetas de Sequências Expressas , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Cacau/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Plântula/metabolismo , Transdução de Sinais , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...